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Cellular Motions and Thermal Fluctuations: The Brownian Ratchet
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ABSTRACT We present here a model for how chemical reactions generate protrusive forces by rectifying Brownian motion.
This sort of energy transduction drives a number of intracellular processes, including filopodial protrusion, propulsion of the

bacterium Listeria, and protein translocation.

INTRODUCTION

Many types of cellular protrusions, including filopodia,
lamellipodia, and acrosomal extension do not appear to in-
volve molecular motors. These processes transduce chemical
bond energy into directed motion, but they do not operate in
a mechanochemical cycle and need not depend directly upon
nucleotide hydrolysis. In this paper we describe several such
processes and present simple formulas for the velocity and
force they generate. We shall call these machines “Brownian
ratchets” (BR) because rectified Brownian motion is funda-
mental to their operation.! The systems we address here are
different from those usually considered protein motors (e.g.,
myosin, dynein, kinesin), but such motors may be Brownian
ratchets as well (1-4).

Consider a particle diffusing in one dimension with dif-
fusion coefficient D. The mean time it takes a particle to
diffuse from the origin, x = 0, to the point x = 8 is: T =
8%/2D. Now, suppose that a domain extending from x = 0 to
x = L is subdivided into N = L/§ subintervals, and that each
boundary, x =n X 8,n =1, 2, ..., Nis a “ratchet”: the
particle can pass freely through a boundary from the left, but
having once passed it cannot go back (i.e., the boundary is
absorbing from the left, but reflecting from the right). The
physical mechanism of the ratchet depends on the situation;
for example, the particle may be prevented from reversing its
motion by a polymerizing fiber to its left. The time to diffuse
alength 8 is T5 = §%/2D. Then the time to diffuse a distance
L=NX2dissimply NX Ts: T = N X Tg =
N (8%2D) = L(8/2D). The average velocity of the particle
is v = LI/T, and so the average speed of a particle that is
“ratcheted” at intervals 8 is
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! To avoid confusion we reserve the term “thermal ratchet” to denote engines
that employ a temperature gradient. Brownian ratchets operate isothermally,
with chemical energy replacing thermal gradients as the energy source.

This is the speed of a perfect BR. Note that as the ratchet
interval, 8, decreases, the ratchet velocity increases. This is
because the frequency of smaller Brownian steps grows more
rapidly than the step size shrinks (when § is of the order of
a mean free path, then this formula obviously breaks down).

Several ingredients must be added to this simple expres-
sion to make it useful in real situations. First, the ratchet
cannot be perfect: a particle crossing a ratchet boundary may
occasionally cross back. Second, in order to perform work,
the ratchet must operate against a force resisting the motion.
To characterize the mechanics of the BR we shall derive
load-velocity relationships similar to the Hill curve that sum-
marizes the mechanics of muscle contraction.

HOW DOES POLYMERIZATION PUSH?

In discussions of cell motility it is frequently asserted that the
polymerization of actin or of microtubules can exert a me-
chanical force. This assertion is usually buttressed by ther-
modynamic arguments that show that the free energy drop
accompanying polymerization is adequate to account for the
mechanical force required (5). Aside from the fact that ther-
modynamics applies only to equilibrium situations, such ar-
guments provide no mechanistic explanation of how the free
energy of polymerization is actually transduced into directed
mechanical force. Here we present a mechanical picture of
how polymerizing filaments can exert mechanical forces.

Filopodia

Janmey was able to load actin monomers into liposomes and
trigger their polymerization (6). He observed that the poly-
merizing fibers extruded long spikes resembling filopodia
from the otherwise spherical liposomes. A similar phenom-
enon was described by Miyamoto and Hotani (7) using tu-
bulin. This demonstrates that polymerization can exert an
axial force capable of overcoming the bending energy of a
lipid bilayer without the aid of molecular motors such as
myosin. Using a bilayer bending modulus of B = 2 X 10712
dyne-cm (8, 9), the energy required to elongate a lipid
cylinder of radius 50 nm from zero length to 5 wm long is
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~2 X 10* kgT.? Since we are dealing with thermal motions,
henceforth we will express all energetic quantities in terms
of kgT ~ 4.1 X 107'* dyne-cm, where kg is Boltzmann’s
constant and T is the absolute temperature. The free energy
change accompanying actin polymerization is AG ~ —14
kgT/monomer (10). So, polymerization can provide suffi-
cient free energy to drive membrane deformation (5, 11). The
BR model provides an explanation for how this free energy
is transduced into an axial force.

Consider the ratchet shown in Fig. 1. An actin rod poly-
merizes against a barrier (e.g., a membrane) whose mobility
we characterize by its diffusion coefficient, D. We model a
polymerizing actin filament as a linear array of monomers;
here, the ratchet mechanism is the intercalation of monomers
between the barrier and the polymer tip. Denote the gap
width between the tip of the rod and the barrier by x, and the
size of a monomer is indicated by 8. When a sufficiently large
fluctuation occurs the gap opens wide enough to allow a
monomer to polymerize onto the end of the rod. The poly-
merization rate is given by R = k,,(x) X M — 3, where M
is the local monomer concentration and k,,(x) X M, reflects
the conditional probability of adding a monomer when
the gap width is x. We set ky,(x) X M = o when x > 8, and
kon(x) X M = 0 when x < &. If no barrier were present, actin
could polymerize at a maximum velocity of 8 X R ~ 0.75
um/s at 25 uM concentration of actin monomers (12). Cel-
lular filopodia protrude at velocities about 0.16 wm/s (13),
well below the maximum polymerization rate. In Appendix
A we show that the polymerization BR obeys the equation

2
?a_i _ gx_g (%) % 1 afe(x + 81) — Hix — 8)e(xn)]

ox
+ B[H(x — 8)c(x — 8,f) — c(x,1)] €))

where c(x,t) is the density of systems in an ensemble at po-
sition x and time ¢. Here D is the diffusion coefficient of the
particle, —f is the load force (i.e., to the left, opposing the
motion), H(x — &) is the Heaviside step function (= 0 for
x < 8, and = 1 for x > 8). The boundary conditions are that
x = 0 is reflecting and that c(x,t) is continuous at x = 8. The

2 If we model a filopod as a cylinder with a hemispherical cap, then we can
compute how much energy it takes to form such a structure from a planar
bilayer. Using B ~ 50kgT, the energy required to bend a membrane into a
hemispherical cap is W = 4wB ~ 600 kgT. To create a membrane cylinder
of radius 50 nm and L = 1 pum costs ~ 3000 kg7/um. To elongate by 1
ratchet distance, 8 = 2.5 nm, against a membrane tension of about o = 0.035
dyne/cm (equivalent to a load force of ~11 pN) costs ~6.6 kgT, so that a
protrusion of 5 wm requires ~1.3 X 10* kg7 of work. Thus the total work
to create a filopod 5 um long and 50-nm radius = 2 X 10% kzT. The binding
energy of an actin monomer is ~ —13.6 kg7/monomer, making the process
8/13.6 ~60% efficient. Each monomer, before attaching to the filament,
binds one ATP which is hydrolyzed sometime after the monomer attaches.
Each hydrolysis yields about AG ~ 15-20 kg7/mol ~62 pN-nm/ATP; if we
were to add this to the ATP; contribution we would have a total free energy
drop of AG ~ ~30 kgT/monomer. However, since ATP is hydrolyzed after
polymerization its contribution to force generation is not important. The
viscous work against the fluid medium is inconsequential compared to the
bending energy, so we can neglect it in this estimate.
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FIGURE 1 The polymerization ratchet. An actin filament polymerizes
against a barrier with diffusion constant D upon which a load, f, acts. Be-
cause the filaments are arranged in a paired helix, we model the ratchet
distance, 8, as half the size of a monomer. The the graphs shows the speed
of the polymerization ratchet, v (um/s), driven by a single actin filament,
as a function of dimensionless load force, w = f X 8/kB. The solid line is
based on Eq. 2, the formula for the ratchet speed when depolymerization is
negligible (8 — 0). The curve was plotted by using w as a parameter, i.e.,
u — [w(w), v(p)]. The dashed line is based on Eq. 3, valid when poly-
merization is much slower than diffusion, a /D < 1 and B 8%/D << 1. The
rate constants were taken from Pollard (12) for actin polymerization: a =
kon X M = 11.3[1/s X uM] X 10[ uM], B = 1.6 [1/s], & = (monomer size)/2
~ 2.7 X 1077 cm, since actin is a double helix). We used a load diffusivity
of D = 1 X 10~° cm?s, corresponding to a disk of diameter ~ 2.5 pm.
Filopodial velocites are below 0.16 wm/s (13), which is about 20% of the
maximum polymerization velocity, 8 X (a — B) = 8 X (kon X M — kog) ~
0.76 wm/s (12, 27). From Eq. 4, the stall force for a single actin fiber is fo
~ 7.8 pN. A filopod composed of 20 filaments presumably could exert 20
times this force.

steady state solution to Eq. 1 gives the force-velocity relation
if we define the ratchet velocity by

afs c(x) dx — BJfg c(x) dx
Jo c(x) dx)

(i.e., we weight the polymerization velocity by the proba-
bility of a 8-sized gap). When depolymerization can be ne-
glected, i.e., B < a, which is the case for actin polymer-
ization, we obtain the load-velocity relationship:

_2D[_ (n— o) (2)
"% [w2+(e°°—w—l)p,] @

where o is the dimensionless work done against the load in
adding one monomer: w = f X &8/kgT, and w(w,8,a,D) > w
is given by solving a transcendental equation, u — © = («
8%/D) [1 — exp(—w)])/p.. Fig. 1 shows a plot of v(w). If the
polymerization and depolymerization velocities are much
slower than the ideal ratchet velocity, i.e., a X §, B X 6 <
2D/8, then the ratchet equation can be solved explicitly for
B + 0. The result is a startlingly simple formula:

v = dae™ - B] ©)

That is, the polymerization rate, a = k., X M, is weighted
by the probability of the load allowing a monomer-sized gap,
6. Note that in this limit the ratchet velocity does not depend

yv=25
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on the diffusion coefficient of the load. Membrane tensions
fall in the range 0.035-0.039 dyne/cm, which amount to a
load force of about 25 pN. A filopod of 20 filaments could
produce a thrust 20 times as strong as a single filament, or
about 200 pN. The force required to stall the ratchet is found
by setting v = 0 in Eq. 3, which yields the familiar ther-
modynamic relationship B/a = exp(~f X 8/kgT), or

kyT
fo= —%m(‘i). (4)

o

This formula for the stall force is exact; it remains valid for
all parameter values, even those that violate the assumptions
used in deriving Eq. 3.

Two observations support the BR model for filopodial
growth. First, the velocity of extension is almost constant
(13), unlike the acrosomal extension of Thyone sperm, in
which length grows as the square root of time (14-19). The
BR mechanism produces a constant velocity provided that
the polymerization affinity is constant. Eventually, the filo-
pod may grow long enough so that the diffusion of actin
monomers to the tip is limiting, in which case the velocity
will decrease. Second, experiments by Bray et al. (20) dem-
onstrated that filopodial extension velocities actually in-
creased somewhat with external osmolarity. This is consis-
tent with the BR mechanism, since pulling water out of the
cell will concentrate the actin monomers, thus increasing the
affinity for a time, and hence the ratchet velocity. This con-
trasts with acrosomal protrusion of Thyone wherein increas-
ing the external osmolarity decreases protrusion velocities
(17-19). However, once a filopod grows long enough so that
diffusion limits the concentration of actin monomers at the
tip, the protrusion velocity will fall to zero quite quickly.

The BR formula omits an important feature: proteins are
flexible, elastic structures, whose internal fluctuations sig-
nificantly affect their motions. In the ratchet formula (2) the
rod is assumed to be stiff and the gap width depends solely
on the diffusion of the barrier. However, since the actin
monomers are themselves flexible, Brownian motion will
induce thermal “breathing” modes which will contribute to
the gap width. There is no simple way to include this into the
model; however, we can use numerical simulations to in-
vestigate elastic effects in particular situations. We have per-
formed a molecular dynamics simulation of this situation
using the parameters for actin; the details of this computation
will be published elsewhere. We find that for rod lengths of
more than 50-100 monomers the fluctuations within the rod
can compress the rod enough to permit polymerization even
if the barrier is too large to diffuse appreciably. In this sit-
uation the elastic compression energy generated by thermal
motions is the proximal origin of the force.

Listeria propulsion

The bacterium Listeria monocytogenes moves through the
cytoplasm of its host cell with velocities typically between
0.02 and 0.2 pwm/s (21), but as fast as 1.5 wm/s in some cells
(22, 23). As it moves, it trails a long tail of polymerized actin
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consisting of many short fibers cross-linked into a mesh-
work; the fibers are oriented predominantly with the barbed
end in the direction of motion (22, 23). Using fluorescent
photoactivation Theriot et al. (21) were able to visualize the
tail as the bacterium moved. They found that the tail re-
mained stationary, and that actin inserted into the tail mesh-
work adjacent to the bacterial body. Taken together, these
observations suggest that actin polymerization may drive
bacterial movement (21, 24).

We propose that Listeria is driven by the BR mechanism:
the polymerizing tail rectifies the random thermal motions of
the bacterium, preventing it from diffusing backwards, but
permitting forward diffusion. In this view the tail doesn’t
actually push the bacterium: propulsion is simply Brownian
diffusion rendered unidirectional by the polymerization of
the actin tail. This could work in several ways. For example,
assume the bacterium diffuses as a Stokes particle of size ~1
um (25), and the polymerization rate constants are the same
as we used in the filopod calculation (12, 26). If the elastic
resistance of the cell’s dense actin gel is the major imped-
iment to the bacterium’s motion, it may be reasonable to
ascribe the load force to this elastic resistance. Then the
ratchet formula predicts velocities in the correct range work-
ing against a load of a few piconewtons. The velocity de-
pends on the effective concentration of actin monomers near
the bacterium. The in vitro concentration is unknown, but is
likely to be much higher than at the tip of a filopod. Using
an effective local concentration of 50 uM (27), the stall force
for a single actin fiber is f, ~ 9 pN, about six times the force
generated by a myosin crossbridge. Since the tail consists of
many fibers, whose orientations are not collinear, we cannot
directly compute the thrust of the tail without knowledge of
the fiber number and orientation distributions. All we can say
is that the computed load-velocity curve shows that one fiber
would be sufficient to drive a 1-um bacterium at 1.5 wm/s
against a load of 1 pN. This calculation assumes that the
Brownian motion of the bacterium is the same as it would be
in fluid cytoplasm. However, the average mesh size of the
cortical actin gel is in the neighborhood of 0.1 um, about
1/10th the size of the bacterium, and so the gel may constrain
the bacterium’s Brownian motion substantially. This can pro-
duce an apparent cytoplasmic viscosity of more than 100
poise, which would reduce the ratchet velocity considerably.
However, molecular dynamics simulations demonstrate that
the elastic breathing modes of the actin tail fibers discussed
above can still drive the motion of the bacterium at the ob-
served velocities. We will report on these simulations else-
where.

According to the BR mechanism the speed of the BR de-
pends on the polymerization rate of actin, although it is not
driven directly by the polymerization. The faster the bacte-
rium can recruit actin from the cytoplasmic pool the faster
the bacterium moves and the longer the tail grows. Theriot
and Mitchison (21) found that the velocity was proportional
to tail length. In Appendix C we show that this linear rela-
tionship between velocity and tail length holds quite gener-
ally, regardless of the mechanism of force generation. Using
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a laser trap it should be possible to measure the stall force
as a function of monomer concentration, which Eq. 4 predicts
should vary as f, ~ In(M). In vivo values of diffusion co-
efficients and monomer concentrations may be quite differ-
ent from those in vitro; and so our computed load-velocity
curve is probably not too accurate. In order to characterize
the Listeria BR motor, it is necessary to design experiments
to measure accurately the diffusion coefficient of a “dead”
bacterium along with the in situ polymerization rates and the
fiber orientations.

A possible analog of the Listeria system was reported re-
cently by Forscher et al. (28): polycationic beads dropped
onto the surface of certain cells commenced to move in the
plane of the membrane at speeds of about 0.16 wm/s. Closer
inspection revealed a tail of polymerized actin streaming be-
hind the moving bead. This resembles the tail of Listeria, and
it is tempting to assert that this too is a manifestation of the
Brownian ratchet mechanism.

PROTEIN TRANSLOCATION

Recently, we proposed that post-translational translocation
of a protein across a membrane may be driven by a BR (29).

PERMISSIVE
PROCESSES

Chaperonin

FIGURE 2 (a) Diffusion of a protein through
the translocation pore depends on permissive
events on the cytoplasmic side of the membrane
and ratcheting events on the lumenal side. In or-
der to enter the pore the protein must be main-
tained in an extended state. This is accomplished
for postranslational translocation by binding of
chaperonins, and for cotranslational translocation
by the ribosomal tunnel (the drawing is not in-
tended to imply the two act concurrently). On the
lumenal side the reptation of the protein through
the pore can be ratcheted by several processes:
disulfide bond formation, glycosylation, and con-
ditions that enhance chain coiling, including dif-
ferences in pH, ionic strength across the mem-
brane, and cleavage of the signal sequence. (b)
The dimensionless load-velocity curve for the
translocation ratchet. w = f X 8/kB is the dimen-
sionless load. The maximum velocity and stall
load are given by Egs. 6 and 7.

Ribosome="
tunnel

Chaperonin
dissociation
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We addressed the process that begins after the proximal tip
of the protein is threaded through the translocation pore (30).
Brownian motion causes the protein to fluctuate back and
forth through the pore, but with no net displacement in either
direction (analogous to a reptating polymer (31)). If a chem-
ical modification of the protein occurs on the distal side of
the membrane which inhibits the chain from reptating back
through the pore, the chain will be ratcheted. The model
assumes that the protein is maintained in an unfolded con-
formation so that it is free to fluctuate back and forth through
the translocation pore. This is accomplished in the cell by the
ribosomal tunnel in the case of cotranslational translocation,
and by chaperonins in the case of post-translational trans-
location. There are several known chemical asymmetries that
can bias the Brownian walk of a chain (cf. Fig. 2) (29, 32-34).
As a polypeptide emerges from the translocation apparatus
the chain is subjected to glycosylation, formation of disulfide
bonds, cleavage of the signal sequence (which affects folding
of the chain, and binding of chaperonins). Any, or all, of these
can induce the asymmetry in the system required for the BR.
This multiplicity of ratchet mechanisms may explain why
different laboratories have attributed the translocation motor

RATCHET
PROCESSES
Translocation -
RRANARRNARNIIS
Chaperonin
binding

COILING:

e ApH

* A(lonic strength)

* Signal sequence
cleavage
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to different constituents of the translocation machinery, and
why almost any protein can be translocated if given the
proper signal sequence.

This ratchet is somewhat different from the polymeriza-
tion BR considered above since there are many ratcheting
sites rather than one. In Appendix B we derive a force-
velocity relationship for the translocation ratchet in the case
where the ratchet mechanism is the binding of chaperonins
on the luminal side of the translocation pore. Since the mo-
tion of each segment is equivalent we consider an ensemble
of points diffusing on a circle of circumference equal to the
length of a ratchet segment of the polymer, 8. As before, each
point is subject to a force —f which imparts a drift velocity
—f X DIkgT. Points are in rapid equilibrium between two
states: S, < S, with rate constants k., and k.. Points in state
S, pass freely through the origin in both directions, but points
in state S, are ratcheted: they cannot cross back across the
origin. Let p be the probability of finding a point in state S;:
P = kon/(kon tkof). Then we can write the net flux of points
as ¢(x, t) = —(DfIkT)c — D(dc/ox), where c(x, t) is the den-
sity of points at position x and time 7. ¢(x) satisfies the steady
state conservation equation (d¢/dx) = 0, with boundary
conditions ¢(0) = ¢(8), and c(6) = (1 —p) X ¢(0). (The latter
boundary condition is not self-evident; it is derived in Ap-
pendix B.) We solve for c(x) and define the average velocity
as v =8¢/N, where N = [ c(x, t) dx is the total number of
points in the ensemble. The result is:

2D Vs w?
TS -1\ _ ©)
1-Ke*-1n) ¢

where w is defined as before, and the parameter is the dis-
sociation constant of the chaperonins. The maximum (no
load) velocity and the stall load are:

_2D 1 6
max T TS ¥ 2K ©
ke T 1
f0=?ln I+E . @)

Note that even when K = 1, translocation still proceeds at
a finite rate, whereas the polymerization ratchet stalls even
in the no-load condition when o = f3. A typical force-velocity
curve computed from Eq. 5 is plotted in Fig. 2. Equation 5
has two important limitations. First, it assumes that the rates
kon and kg are very fast, and second, that the ratchet is in-
elastic. The effect of elasticity cannot be handled analyti-
cally; however, numerical studies show that an elastic chain
translocates faster than a rigid chain (29). This is because
local fluctuations can carry a subunit through the pore to be
ratcheted without translocating the entire chain. Note that Eq.
6 implies that the average translocation time for a free chain
of length Lis T = L/v « L X §; for a chain of length L =
n X 8, T = §2. Numerical simulations show that this quadratic
dependence on ratchet distance is obeyed for elastic chains
as well (29).
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Since there is no obvious load force resisting translocation,
we can use Eq. 6 to put some quantitative bounds on the
translocation time of a protein. For example, the slowest time
corresponds to the situation where one end is just threaded
through the translocation pore and translocation is completed
when the other end passes through the translation pore. Tak-
ing 6 ~ 100 nm as the length of an unfolded protein, and D
~107® cm?¥s as the longitudinal diffusion coefficient, the
translocation time is ~ 5 ms; but if the chain is ratcheted
every 5 nm, the transit time is 0.25 ms—faster by a factor of
20. This estimate of T is probably too short, since the one-
dimensional formula (6) cannot take into account the effects
of chain coiling; for this a full three-dimensional calculation
must be carried out. Also, Eq. 5 neglects the effect of chain
elasticity, which significantly adds to the translocation ve-
locity. Thus, both our numerical and analytical calculations
demonstrate that the BR mechanism is more than sufficient
to account for the observed rates of translocation. Recent
experiments by Ooi and Weiss (35) have confirmed the pre-
dictions of the BR model. They found that proteins targeted
to liposomes could translocate bidirectionally through the
translocation pore. However, if the lumen contained the
chaperonin BiP, or if lumenal glycosylation was enabled,
proteins translocated unidirectionally.

There are several other phenomena that are possibly driven
by rectified diffusion. For example, the polymerization of
sickle hemoglobin into the rods that deform the erythrocyte
membrane appear similar to filopod protrusion (36), and
probably derive their thrust from the same mechanism. Fi-
nally, in vitro model systems show that depolymerizing
microtubules can drive kinetochore movements toward the
minus end at velocities of ~0.5 um/s and exert forces on the
order of ~1073 dyne (37). Koshland et al. (37) describe a
qualitative model for how depolymerization could drive
kinetochore movement, and Hill and Kirschner (5) have
shown that such movements are thermodynamically feasible.
The BR model fills in the mechanical mechanism, and
Eq. 5 may apply to this phenomenon as well.

DISCUSSION

The notion that biased Brownian motion drives certain bi-
ological motions is not new: Huxley implied as much in his
1957 model for myosin (38), and later authors have proposed
similar models for other molecular motors (1-4, 39). The
model we present here differs from these in two respects.
Physically, we are modeling mechanisms that do not operate
in the same thermodynamic cycle as do molecular motors.
Rather they are “one-shot” engines; for example, after pro-
trusion of a filopod the polymers must be disassembled and
the process started anew. Mathematically, we do not treat the
motion as a biased random walk, as in Feynman’s “thermal
ratchet” machine (40). Biased random walk models assume
asymmetric jump probabilities in either direction at each
step; in the limit of small step sizes this produces a contin-
uous drift velocity proportional to the difference in jump
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probabilities (41). By contrast, we assume that the jump
probabilities are symmetric, and so diffusion is unbiased.
Only when diffusion crosses a ratchet threshold does the
motion become ratcheted.

Perhaps these differences do not distinguish between ther-
mal mechanisms in any fundamental way, for thermal fluc-
tuations participate in all chemical reactions and, ultimately,
the BR mechanism derives its free energy from chemical
reactions: actin polymerization in the case of Listeria and
filopodial motion, and by a variety of processes in protein
translocation, including binding of chaperonins, post-
translational coiling, glycosylation, etc. As in Huxley’s
model and its relatives, the proximal force for movement
arises from random thermal fluctuations, while the chemical
potential release accompanying reactions serves to rectify the
thermal motions of the load (e.g., Refs. 2 and 42). For ex-
ample, the binding free energy of a monomer to the end of
an actin filament must be tight enough to prevent the load
from back diffusion. If AG, were ~kgT, the residence time
of the monomer would be short and the site would likely be
empty when the load experiences a reverse fluctuation, or, if
the site is occupied, the force of its collision with the load
would dislodge the monomer. Hence the concentration of
monomers and the binding energy of polymerization supply
the free energy to implement the ratchet. Thus these pro-
cesses do not violate the Second Law; rather they use chem-
ical bond energy to bias the available thermal fluctuations to
drive the ratchet.

APPENDICES
A. The polymerization ratchet

In this appendix we derive the load-velocity relation for the polymerization
ratchet. Consider the situation shown in Fig. 3.

AT

FIGURE 3 Transition diagram for Eqs. A1 and A2.
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A particle diffuses in one dimension ahead of a growing polymer. We put
the origin of our coordinate system on the tip of the polymer so that the
distance between the tip and the diffusing particle is x. The particle executes
a continuous random walk (Brownian motion) with diffusion coefficient D
in a constant force field, —f, which imparts a drift velocity ~Df /kgT. When-
ever the distance between the particle and the tip of the polymer exceeds
the size of a monomer, §, there is a probability/unit time a = k,, X (mono-
mer concentration) that a monomer will polymerize onto the tip, extending
the length of the polymer by 8. This is equivalent to the particle jumping
from x — x — §, since x is the distance between the particle and the tip of
the polymer. Regardless of the position of the diffusing particle, there is a
probability/unit time B = k¢ of a monomer dissociating from the tip of the
polymer. This is equivalent to the particle jumping from x — x + 8. We
describe the mean behavior of a large ensemble of such particle-polymer
systems by defining a density c(x, t), such that [ c(x, r) dx = number of
systems in the ensemble for which x is in the interval (a, b) at time .
Consulting the transition diagram in Fig. 3, one can see that c(x, t) obeys
the following pair of diffusion equations:

B _pPe DI, et bn) - Bl x<5 (AD
o Por Vit c(x + 8, x, 1), x
PG KPP SR
a o kgTox T oD TAx
+ Blex — 8,1) — c(x, 1], x>8 (A2)

With the help of the Heaviside step function, these may be written as a
single equation, as has been done in the text (Eq. 1). We will assume that
the free energy of polymerization is sufficiently large that a monomer cannot
be knocked off if the load fluctuates to the left and hits the tip. Thus we can
impose the reflecting boundary condition at x = 0 as follows.

ac(0, 1) Df _
D p™ kBTc(O, n=0 (A3)

We also impose the condition that c(x, #) be continuous at x = § (this tums
out to ensure that the flux is continuous at x = § as well):

c(8_,1) =c(8,,1). (Ad)

Once a steady state solution c(x) has been found for a given load force
£, the velocity corresponding to that load is found as follows.

_cafsc(x)dx — B[ clx) dx
Ve 5 el dx (A%

This is because [ c(x) dx is the total number of systems in the ensemble
and [3 c(x) dx is the number of systems for which the gap between the
diffusing particle and the polymer tip is large enough for monomer insertion.
Thus af3 c(x) dx — Bf§ c(x) dx is the net rate of polymerization (number
of monomers inserted minus the number of monomers removed/unit time)
for the ensemble as a whole. Dividing by the number of systems in the
ensemble, we obtain the net rate of polymerization/system (i.e., per polymer
chain). Finally, we multiply by the monomer size, §, to convert this rate to
the velocity with which the polymer tip advances. As a result of this entire
computation, we obtain the formula for the mean polymerization velocity
as a function of the load force f, as given in the text (Eq. 2).

B. The translocation ratchet

The situation for the translocation ratchet is somewhat different from that
of the polymerization ratchet and requires a separate analysis. Consider a
rod diffusing longitudinally along the x axis with diffusion coefficient D.
A force, —f, is applied to the end of the rod which imparts a drift velocity
—(f1y) = —(D/kgT)f, where { is the frictional drag coefficient. The rod
carries ratchet sites which are equally spaced and have separation 8 between
adjacent sites. We assume that a ratchet site can freely cross the origin from
left to right. In the case of a perfect ratchet, we assume that each ratchet site,
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and hence the entire rod, is reflected every time a ratchet site attempts to
cross the origin from right to left. In the case of an imperfect ratchet, such
reflection is not certain, but is assigned a probability, p. In either case,
analysis of the situation is facilitated by introducing a variable X(z) = po-
sition of the first site to the right of the origin, so that X(z) is always in (0,8).
Then X(¢) describes a (continuous) random walk on a circular domain with
a rectifying (or partially rectifying) condition at the origin (see Fig. 4).

The perfect translocation ratchet

Consider an ensemble of such rods, and let c(x, t) be the density of the
variable X(t), defined above, so that [ Z c(x,t) = number of rods in the
interval: @ < X(t) < b. Then the flux of rods at a point x is as follows.

b
6= P D (B1)

The density and flux satisfy the following conservation equation.

a o
dk %_, (B2)
at  ox

The boundary conditions for this system are as follows.
(0,1 = (3,1 (B3)
c(8,D=0 (B4)

The first condition expresses the fact that a new ratchet appears at x =
0 each time an old one disappears at x = 8. The second condition expresses
the fact that x = 8 is an absorbing boundary, since the ratchet is perfect.
We shall consider only steady states, in which ¢ and ¢ are independent
of time. Then, since dc/dt = 0, we also have d¢/ox = 0, and so ¢ is an
unknown constant. The concentration, c(x,t) is obtained by solving Eq. B1

/)
on
/ Koff
“«f
<§5—> =0
(@
cr(a,tfi »l .01
[

(b)

FIGURE 4 (a) Geometry of the translocation ratchet. Binding sites for
chaperonins are spaced & apart. ko, and k. are the binding and dissociation
rate constants, respectively. (b) Transition diagram for deriving the bound-
ary condition (B27).
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with the boundary condition (Eq. B4). The solution is:

_kTo[ f6-»
Df ks T :

The number of rods in the ensemble can expressed in terms of the
flux, ¢:

8 2
_ -9 (T fey__ 18
N—Lc(x)dx— D <f8)[exp(k87_> 1 kBT]' (B6)

The flux ¢ is the average rate at which ratchet sites cross the origin (from
left to right) in the ensemble as a whole. Thus ¢/N is the corresponding rate
for an individual rod. Since the rod moves a distance & for each site ratcheted,
the mean velocity of the rod is 8 X ¢/N. Thus we may compute the average
velocity of the perfect translocation ratchet as

_(» w2 B7
V= § /€’ -1)-ow (B7)

cx) (BS)

where w = (fd/kgT). At zero load this reduces to the ideal ratchet velocity
v = (2D/3). Note that as a consequence of assuming that the ratchet is
perfect there is no force that will bring the ratchet to a halt. To circumvent
this feature we generalize the model as follows.

The imperfect translocation ratchet

Suppose that each site which is located on x > 0 can exist in two states that
are in rapid equilibrium:

koff
S & S (B8)
k

on

and that only sites in the state S, are ratcheted. Thus sites in state S, pass
freely through the origin in both directions, but sites in state S, are reflected.
Let p be the probability of finding a ratchet in state S;:

kon
= (B9
kon + koff

p
where k., and k¢ are the rate constants for the transitions between the two
states. The results of this section are valid in the limit k., — ®, ko — ,
but in such a way that p has a finite limit. As a physical example of
an imperfect Brownian ratchet one may consider the case in which chap-
eronin molecules are present in solution on the trans side of the mem-
brane (x > 0) and can bind reversibly to specific sites on a protein molecule.
Such a site is assumed ratcheted (State S;) when a chaperonin molecule is
bound.

In an imperfect ratchet, Egs. B1, B2, and B3 still apply, but the boundary
condition (Eq. B4) is replaced by
c(d) = (1 = p)c(0). (B10)
The justification for this boundary condition is given below. Proceeding as
before, we solve for c(x), then N, and compute the velocity as follows.

2D Vaw?
[y e’ -1)
1-Ke"-1) "¢

Here w = (f&/kgT) is the work done against the load force f when the
ratchet moves one unit, §, and K = (1 — p)/p = koglkon) is the dissociation
constant of the ratchet. The shape of the load-velocity curve is concave,

(B11)
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decreasing from a no-load velocity of vmax = (2D/8)(1/1 + 2K) to a stall
velocity at f, = (kgT/8) In(1 + (1/K)). For the ranges of parameters we

shall employ, the force-velocity curve is practically linear and can be ap-
proximated by

=2 L,
Y Vi %) 1+

Deriviation of the boundary condition

__ fSksT
In(K + 1)/K)

). (B12)

The boundary condition ¢(8) = (1 — p)c(0) is crucial to the derivation of
the ratchet equation. To see where it comes from we proceed as follows. The
diffusion equation implies an infinite speed for a Brownian particle and
equal probabilities of stepping to the right or left (41). Therefore, we ex-
amine the limit of a finite speed random walk by defining density functions
for points moving to the right, ¢.(x,?), and to the left, c(x, t). with speed
s. These obey the conservation equations:

ac, ac

5 TS = Wt ma (B13)
ac acy
5 - 5:9; = Yl — Yu€i (B14)

Here 7y, and v, are the probabilities per unit time of a point changing
direction from left to right and right to left, respectively. We shall solve these
equations on the circular domain (0, 8) using the following transition rules
at the origin x = 0 = 8 (cf. Fig. 4). Points moving to the right cross the origin
and continue to the right. Leftward moving points encountering the bound-
ary have a probability p of reversing their direction and a probability (1 -
p) of maintaining their direction. This translates into the following condi-
tions on the fluxes of particles at the origin as follows.

sc,(8, 1) + sp X (0, 1) = 5¢,(0, 1) (B15)
5¢,(8, 1) = s(1 — p) X (0, 1) (B16)
Dividing by s and rearranging yields:
¢ (8,1) = ¢, (0,1) — p(0,1) (B17)
a8, =(1 —p) Xcl0,1). (B18)

Rather than solving for ¢, and ¢, we shall solve for their sum and dif-
ference:

cx, ) =c(x 1)+ cx D) (B19)
u(x, 1) = c,(x, 1) — c\(x, 1). (B20)
Adding and subtracting the conservation equations yields:
AL ®21)
o ax
du + g _ B22
ot s ox e-w (B22)

where v = vy, — v, and y = v, + .. We can reduce this to a single equation
in c(x,t) by eliminating the unknown u and defining Sy = D and
vis =—f/kgT as follows.

1d% L% _ Dfdc_ d%c
vol ot kgTox = ax® (B23)
As s — o with D and f fixed, this becomes
dc #c Df ac B24
or ox?  kgTax (B24)
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which is equivalent to Eqs. B1-B2. The boundary condition for this equation
may be deduced from Eqs. B17 and B18; it is as follows.

c(8,1) = c(0,1) — p2¢;(0,1) = (1 — p) X (0, 1) + p X u(0, 1). (B25)

This boundary condition contains the variable u, which we now show van-
ishes in the limit considered above. Dividing the equation for du/dt by vy:

lou sdc (v)
——+-——=|-)c—u
yot yox b%
Now, let y — o (with D and f fixed), and note that s/y = \/Ey/'y -
0, v/y = (—Df kgT)(1/s) = (— DflkgT) X (1 X \/ Dy) — 0 (with D and
ffixed). Therefore, u — 0 as y — o; that is, as the reversal rate, y gets very

large, the random walk becomes symmetric (41). Since u — 0, the limiting
form of the boundary condition on c is as follows.

(B26)

c8,n=(~1-p)Xc0,0) (B27)

C. Listeria velocity is proportional to tail length

Using fluorescently tagged actin monomers Theriot and Mitchison (21)
demonstrated that the velocity of a bacterium varies linearly with the length
of its actin tail. We can describe these experiments as follows. In the lab
frame, the tail is stationary and the bacterium moves (say, to the right) at
velocity v > 0. In a coordinate system attached to the bacterium, the tail has
velocity —v, and the posterior edge of the bacterium is located at some fixed
position, say x = 0. Let n(x, t) be the density of short actin filaments in the
tail at position x and time ¢. Then the conservation equation for the fiber
density is:

Xv)= —pun (C1)

where v is the bacterial velocity so that —v is the velocity of the tail relative
to the bacterium, and p is the local rate of actin depolymerization; Eq. C1
holds on x < 0. Let us consider the steady state situation, (dn/dtr) = 0. The
boundary condition for this equation is simply that the flux of tail material
at the bacterial interface is equal to the polymerization rate:

v X n(0) = ¢ = polymerization rate. (C2)

At steady state  is constant and the solution to the conservation equation
is

v
n(x) = n(O)exp(“Tx) = jexp(‘%), x<0. (C3)

Note that the space constant for the exponential decay of the tail density
is L = v/u;in this sense, the length of the tail is proportional to v. Therefore,
the length of the tail will be proportional to v, and the slope of the L vs. v
curve simply measures the rate of depolymerization of the tail meshwork.
Thus the linearity of velocity with tail length does not tell us anything about
the mechanism of locomotion.
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